

Voltage Transducer LV 25-P

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$I_{PN} = 10 \text{ mA}$ $V_{PN} = 10..500 \text{ V}$

Electrical data

$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		10 0 ± 14 R _{M min} R _{M max}		mA mA
	with ± 12 V	$@ \pm 10 \text{ mA}_{max}$	30	190	Ω
		@ ± 14 mA _{max}	30	100	Ω
	with ± 15 V	@ ± 10 mA _{max}	100	350	Ω
		$@ \pm 14 \text{ mA}_{max}$	100	190	Ω
I_{SN}	Secondary nominal r.m.s. current		25		mΑ
K _N	Conversion ratio		2500:1000		
V _c	Supply voltage (± 5 %)		± 12	15	V
I _c	Current consumption		$10 (@ \pm 15 V) + I_s mA$		
V _d	R.m.s. voltage for AC isola	ation test 1), 50 Hz, 1 mn	2.5		kV

Accuracy - Dynamic performance data

$\mathbf{X}_{\scriptscriptstyle{G}}$	Overall Accuracy @ I_{PN} , $T_A = 25$ °C		± 0.9		%
e _	Linearity	@ ± 15 V (± 5 %)	± 0.8 < 0.2		% %
I _o	Offset current @ $\mathbf{I}_{\rm P}$ = 0, $\mathbf{T}_{\rm A}$ = 25°C Thermal drift of $\mathbf{I}_{\rm O}$	0°C + 25°C + 25°C + 70°C	Typ ± 0.06 ± 0.10	Max ± 0.15 ± 0.25 ± 0.35	mA mA mA
t _r	Response time $^{2)}$ @ 90 % of $\mathbf{V}_{\mathrm{P max}}$	(40		μs

General data

$T_{_{\rm A}}$	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
R ᢆ₽	Primary coil resistance @ T _A = 70°C	250	Ω
R _s	Secondary coil resistance @ T _A = 70°C	110	Ω
m	Mass	22	g
	Standards 3)	EN 50178	

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Principle of use

 For voltage measurements, a current proportional to the measured voltage must be passed through an external resistor R₁ which is selected by the user and installed in series with the primary circuit of the transducer.

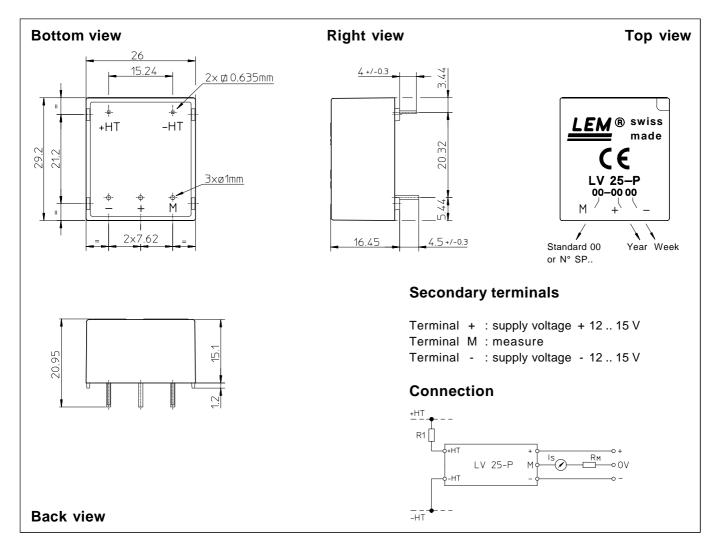
Advantages

- Excellent accuracy
- Very good linearity
- · Low thermal drift
- Low response time
- · High bandwidth
- High immunity to external interference
- Low disturbance in common mode.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

Notes: 1) Between primary and secondary


 $^{2)}$ R $_{_{1}}$ = 25 k Ω (L/R constant, produced by the resistance and inductance of the primary circuit)

³⁾ A list of corresponding tests is available

981125/14

Dimensions LV 25-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

± 0.2 mm

2 pins

• Fastening & connection of primary

0.635 x 0.635 mm

Fastening & connection of secondary

3 pins Ø 1 mm

• Recommended PCB hole

1.2 mm

Remarks

- \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

Instructions for use of the voltage transducer model LV 25-P

Primary resistor \mathbf{R}_1 : the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, \mathbf{R}_1 should be calculated so that the nominal voltage to be measured corresponds to a primary current of 10 mA.

Example: Voltage to be measured \mathbf{V}_{PN} = 250 V

a) $\mathbf{R}_1 = 25 \text{ k}\Omega/2.5 \text{ W}, \mathbf{I}_p = 10 \text{ mA}$

Accuracy = \pm 0.8 % of \mathbf{V}_{PN} (@ \mathbf{T}_{A} = $+25^{\circ}$ C)

PN ---

b) $\mathbf{R}_{1} = 50 \text{ k}\Omega/1.25 \text{ W}, \mathbf{I}_{P} = 5 \text{ mA}$

Accuracy = $\pm 1.6 \% \text{ of } \mathbf{V}_{PN} \text{ (@ } \mathbf{T}_{A} = +25 ^{\circ}\text{C)}$

Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to R_{\perp} in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages from 10 to 500 V.